Respuesta :

Answer:

[tex]\textsf{1.} \quad y=-\dfrac{1}{30}x^2+\dfrac{1}{2}x+\dfrac{68}{15}\:\:\textsf{ where}\:\:x \geq \dfrac{15-\sqrt{769}}{2}\\\\\quad \textsf{or} \quad y=2\sqrt{x+5}[/tex]

[tex]\textsf{2.} \quad y=-|x+1|+5[/tex]

Step-by-step explanation:

Question 1


Method 1 - modelling as a quadratic with restricted domain


Assuming that the points given on the graph are points that the curve passes through, the curve can be modeled as a quadratic with a limited domain.  Please note that as the x-intercept has not been defined on the graph, I am not including this in this first method.

Standard form of a quadratic equation:

[tex]y=ax^2+bx+c[/tex]

Given points:

  • (-4, 2)
  • (-1, 4)
  • (4, 6)

Substitute the given points into the equation to create 3 equations:

Equation 1  (-4, 2)

[tex]\implies a(-4)^2+b(-4)+c=2[/tex]

[tex]\implies 16a-4b+c=2[/tex]

Equation 2  (-1, 4)

[tex]\implies a(-1)^2+b(-1)+c=4[/tex]

[tex]\implies a-b+c=4[/tex]


Equation 3  (4, 6)

[tex]\implies a(4)^2+b(4)+c=6[/tex]

[tex]\implies 16a+4b+c=6[/tex]

Subtract Equation 1 from Equation 3 to eliminate variables a and c:

[tex]\implies (16a+4b+c)-(16a-4b+c)=6-2[/tex]

[tex]\implies 8b=4[/tex]

[tex]\implies b=\dfrac{4}{8}[/tex]

[tex]\implies b=\dfrac{1}{2}[/tex]

Subtract Equation 2 from Equation 3 to eliminate variable c:

[tex]\implies (16a+4b+c)-(a-b+c)=6-4[/tex]

[tex]\implies 15a+5b=2[/tex]

[tex]\implies 15a=2-5b[/tex]

[tex]\implies a=\dfrac{2-5b}{15}[/tex]

Substitute found value of b into the expression for a and solve for a:

[tex]\implies a=\dfrac{2-5(\frac{1}{2})}{15}[/tex]

[tex]\implies a=-\dfrac{1}{30}[/tex]

Substitute found values of a and b into Equation 2 and solve for c:

[tex]\implies a-b+c=4[/tex]

[tex]\implies -\dfrac{1}{30}-\dfrac{1}{2}+c=4[/tex]

[tex]\implies c=\dfrac{68}{15}[/tex]

Therefore, the equation of the graph is:

[tex]y=-\dfrac{1}{30}x^2+\dfrac{1}{2}x+\dfrac{68}{15}[/tex]

[tex]\textsf{with the restricted domain}: \quad x \geq \dfrac{15-\sqrt{769}}{2}[/tex]

Method 2 - modelling as a square root function

Assuming that the points given on the graph are points that the curve passes through, and the x-intercept should be included, we can model this curve as a square root function.

Given points:

  • (-4, 2)
  • (-1, 4)
  • (4, 6)
  • (0, -5)

The parent function is:

[tex]y=\sqrt{x}[/tex]

Translated 5 units left so that the x-intercept is (0, -5):

[tex]\implies y=\sqrt{x+5}[/tex]

The curve is stretched vertically, so:

[tex]\implies y=a\sqrt{x+5} \quad \textsf{(where a is some constant)}[/tex]

To find a, substitute the coordinates of the given points:

[tex]\implies a\sqrt{-4+5}=2[/tex]

[tex]\implies a=2[/tex]

[tex]\implies a\sqrt{-1+5}=4[/tex]

[tex]\implies 2a=4[/tex]

[tex]\implies a=2[/tex]

[tex]\implies a\sqrt{4+5}=6[/tex]

[tex]\implies 3a=6[/tex]

[tex]\implies a=2[/tex]

As the value of a is the same for all points, the equation of the line is:

[tex]y=2\sqrt{x+5}[/tex]

Question 2

Vertex form of an absolute value function

[tex]f(x)=a|x-h|+k[/tex]

where:

  • (h, k) is the vertex
  • a is some constant

From inspection of the given graph:

  • vertex = (-1, 5)
  • point on graph = (0, 4)

Substitute the given values into the function and solve for a:

[tex]\implies a|0-(-1)|+5=4[/tex]

[tex]\implies a+5=4[/tex]

[tex]\implies a=-1[/tex]

Substituting the given vertex and the found value of a into the function, the equation of the graph is:

[tex]y=-|x+1|+5[/tex]