Please solve this for me thank you!

Answer:
620.14
Step-by-step explanation:
Original Equation:
[tex]\frac{4y}{1.025^4}+y-2y(1.05)^2=1500[/tex]
Calculate exponents
[tex]\frac{4y}{1.103812890625}+y-2y(1.1025)=1500\\[/tex]
Simplify:
[tex]3.6238025791990193084270042653997y + y - 2.205y = 1500[/tex]
Add like terms
[tex]2.4188025791990193084270042653997y \approx 1500[/tex]
Divide both sides by 7.012
[tex]y\approx 213.91[/tex][tex]y\approx620.14[/tex]
Answer:
y = $620.14 (nearest cent)
Step-by-step explanation:
Given equation:
[tex]\dfrac{4y}{1.025^4}+y-2y(1.05)^2=\$1,500[/tex]
Factor out y from the left side:
[tex]\implies y\left(\dfrac{4}{1.025^4}+1-2(1.05)^2\right)=\$1,500[/tex]
Carry out the arithmetic operations inside the parentheses by following the order of operations PEMDAS:
Calculate the exponents:
[tex]\implies y\left(\dfrac{4}{1.103812891...}+1-2(1.1025)\right)=\$1,500[/tex]
Carry out the multiplication and division from left to right:
[tex]\implies y\left(3.623802579...+1-2.205\right)=\$1,500[/tex]
Carry out the addition and subtraction from left to right:
[tex]\implies y\left(4.623802579...-2.205\right)=\$1,500[/tex]
[tex]\implies y\left(2.418802579...\right)=\$1,500[/tex]
Finally, divide both sides by the coefficient of y to isolate y:
[tex]\implies \dfrac{y\left(2.418802579...\right)}{2.418802579...}=\dfrac{\$1,500}{2.418802579...}[/tex]
[tex]\implies y=\$620.141558...[/tex]
Therefore, y = $620.14 (nearest cent)