Respuesta :
Answer:
Option 1: 4(2y - 4x) -1
Step-by-step explanation:
Hello!
Given:
- x = 0.5
- y = 3
Plug in the values for x and y into each equation and see which one outputs 15.
4(2y - 4x) -1
- 4(2(3) - 4(0.5)) - 1
- 4(6 - 2) - 1
- 4(4) - 1
- 16-1
- 15
(x² + 1) + 2x + 3y
- (0.5² + 1) + 2(0.5) + 3(3)
- 1.25 + 1 + 9
- 11.25
4x²+2y³-10
- 4(0.5²) + 2(3³) - 10
- 4(0.25) + 2(27) - 10
- 1 + 54 - 10
- 55 - 10
- 45
xy+3+20x
- (0.5)(3) + 3 + 20(0.5)
- 1.5 + 3 + 10
- 4.5 + 10
- 14.5
The only option that works is the first option.
Answer:
[tex]4 (2y-4x)-1[/tex]
Step-by-step explanation:
Given:
- [tex]x =\dfrac{1}{2}[/tex]
- [tex]y=3[/tex]
To find which expressions equal 15, substitute the given values of x and y into the expressions and evaluate:
[tex]\begin{aligned}4(2y-4x)-1 &= 4 \left(2(3)-4 \left(\dfrac{1}{2}\right)\right)-1\\& = 4 \left(6-2\right)-1\\& = 4 \left(4\right)-1\\& = 16-1\\& = 15\\\end{aligned}[/tex]
[tex]\begin{aligned}(x^2+1)+2x+3y & = \left(\left(\dfrac{1}{2}\right)^2+1\right)+2 \left(\dfrac{1}{2}\right)+3(3)\\& = \left(\left\dfrac{1}{4}+1\right)+1+9\\& = \dfrac{5}{4}+1+1+9\\& = \dfrac{45}{4}\end{aligned}[/tex]
[tex]\begin{aligned}4x^2+2y^3-10 & = 4\left(\dfrac{1}{2}\right)^2+2(3)^3-10\\& = 4\left(\dfrac{1}{4}\right)+2(27)-10\\& = 1+54-10\\& = 45\end{aligned}[/tex]
[tex]\begin{aligned}xy+3+20x & = \left(\dfrac{1}{2}\right)(3)+3+20\left(\dfrac{1}{2}\right)\\& = \dfrac{3}{2}+3+10\\& = \dfrac{29}{2}\end{aligned}[/tex]
Therefore, the only expression that equals 15 is:
[tex]4(2y-4x)-1[/tex]