Respuesta :
Answer:
[tex]\huge\boxed{\sf (f-g)(x) = 3x\² + 4x - 14}[/tex]
Step-by-step explanation:
Given functions:
- f(x) = 4x² - 6
- g(x) = x² - 4x - 8
Solution:
Subtract both functions
(f-g)(x) = 4x² - 6 - (x² - 4x - 8)
(f-g)(x) = 4x² - 6 - x² + 4x - 8
Combine like terms
(f-g)(x) = 4x² - x² + 4x - 6 - 8
(f-g)(x) = 3x² + 4x - 14
[tex]\rule[225]{225}{2}[/tex]
Given: f(x)=4x^2-6f(x)=4x2−6g(x)=x^2-4x-8g(x)=x2−4x−8
To find : (f-g)(x)
(f-g)(x)=f(x)-g(x)(f−g)(x)=f(x)−g(x)
(4x^2-6)-(x^2-4x-8)
Using Distributive property:-
4x^2-6-x^2+4x+8
4x^2-x^2+4x+8-6
Combine like term
3x^2+4x+2
(f-g)(x)=3x^2+4x+2
Hence, The composite function is (f-g)(x)=3x^2+4x+2