The option that is the equivalent form of the expression for the amount remaining in shipment 2 is the second option: 50 ([tex]\frac{1}{2} ^ \frac{t}{5} / \frac{1}{2} ^ \frac{2}{5}[/tex])
Note that:
f(t)= 50 (1/2)^ [tex]\frac{t-2}{5}[/tex]
f(t)= 50 (1/2)^ [tex]\frac{\frac{t}{5} } - {\frac{2}{5} }[/tex]
Note also that in indices, [tex]x^{-y}[/tex] = 1/ [tex]x^{y}[/tex]
Then: 50 ([tex]\frac{1}{2} ^ \frac{t}{5} / \frac{1}{2} ^ \frac{2}{5}[/tex])
([tex]50 \frac {1}{2} ^ \frac{t}{5} / \frac{1}{2} ^ \frac{2}{5}[/tex])
= 50 ([tex]\frac{1}{2} ^ \frac{t}{5} / \frac{1}{2} ^ \frac{2}{5}[/tex])
Therefore, The option that is the equivalent form of the expression for the amount remaining in shipment 2 is the second option: 50 ([tex]\frac{1}{2} ^ \frac{t}{5} / \frac{1}{2} ^ \frac{2}{5}[/tex])
Learn more about radioactive element from
https://brainly.com/question/25799605
#SPJ1