Respuesta :

ustun

Step-by-step explanation:

3y-13>-9

3y-13<-1

3y>4

3y<12

12>3y>4

y=2,3,4

Answer:

[tex]\left[ \dfrac{4}{3},4 \right][/tex]

Step-by-step explanation:

Inequality 1

[tex]3y-13\geq -9[/tex]

Add 13 to both sides:

[tex]\implies 3y-13+13\geq -9+13[/tex]

[tex]\implies 3y\geq 4[/tex]

Divide both sides by 3:

[tex]\implies \dfrac{3y}{3}\geq \dfrac{4}{3}[/tex]

[tex]\implies y \geq \dfrac{4}{3}[/tex]

Therefore, y is equal to or bigger than 4/3.

Inequality 2

[tex]3y-13\leq -1[/tex]

Add 13 to both sides:

[tex]\implies 3y-13+13\leq -1+13[/tex]

[tex]\implies 3y\leq 12[/tex]

Divide both sides by 3:

[tex]\implies \dfrac{3y}{3}\leq \dfrac{12}{3}[/tex]

[tex]\implies y\leq 4[/tex]

Therefore, y is equal to or smaller than 4.

Therefore, the solution to the inequalities in interval notation is:

[tex]\left[ \dfrac{4}{3},4 \right][/tex]