Respuesta :

Answer:

x = 1

Explanation:

[tex]\sf \rightarrow log(3x) + log(x + 4) = log(15)[/tex]

Rule: log(a) + log(b) = log(ab)

[tex]\sf \rightarrow log(3x(x + 4)) = log(15)[/tex]

cancel out log on both sides

[tex]\sf \rightarrow 3x(x + 4) = 15[/tex]

relocate constant variable

[tex]\sf \rightarrow 3x^2 + 12x -15 = 0[/tex]

take 3 as a common factor

[tex]\sf \rightarrow 3(x^2 + 4x -5) = 0[/tex]

divide both sides by 3

[tex]\sf \rightarrow x^2 + 4x -5 = 0[/tex]

middle term split

[tex]\sf \rightarrow x^2 + 5x -x-5 = 0[/tex]

factor common terms

[tex]\sf \rightarrow x(x + 5) -1(x+5)= 0[/tex]

collect into groups

[tex]\sf \rightarrow (x-1)(x+5)= 0[/tex]

set to zero

[tex]\sf \rightarrow x-1 = 0 , \ x+5= 0[/tex]

relocate variables

[tex]\sf \rightarrow x = 1, \ x = -5[/tex]

There must be a positive solution for log, so the solution is only x = 1

Answer:

[tex]x=1[/tex]

Step-by-step explanation:

Given:

[tex]\log (3x)+\log(x+4)=\log (15)[/tex]

As the logs have no base, assume that the base is 10.

[tex]\textsf{Apply log Product law}: \quad \log_ax + \log_ay=\log_axy[/tex]

[tex]\implies \log_{10} (3x)+\log_{10}(x+4)=\log_{10} (15)[/tex]

[tex]\implies \log_{10} \left(3x(x+4)\right)=\log_{10} (15)[/tex]

Expand the brackets:

[tex]\implies \log_{10} \left(3x^2+12x\right)=\log_{10} (15)[/tex]

[tex]\textsf{Apply the log Equality law}: \quad \textsf{if }\: \log_ax=\log_ay\:\textsf{ then }\:x=y[/tex]

[tex]\implies 3x^2+12x=15[/tex]

Subtract 15 from both sides:

[tex]\implies 3x^2+12x-15=0[/tex]

Factor out the common term 3:

[tex]\implies 3(x^2+4x-5)=0[/tex]

Divide both sides by 3:

[tex]\implies x^2+4x-5=0[/tex]

Split the middle term:

[tex]\implies x^2+5x-x-5=0[/tex]

Factorize the first two terms and the last two terms separately:

[tex]\implies x(x+5)-1(x+5)=0[/tex]

Factor out the common term (x + 5):

[tex]\implies (x-1)(x+5)=0[/tex]

Therefore:

[tex]x-1=0 \implies x=1[/tex]

[tex]x+5=0 \implies x=-5[/tex]

As logs cannot be taken of negative numbers, [tex]x=-5[/tex] is an extraneous solution.  Therefore, the only valid solution is:  [tex]x=1[/tex]