3.73 x[tex]10^{-3}[/tex] the rate of change of [tex]ClF_3[/tex] if the concentration of [tex]F_2[/tex]decreases from 0.950 M to 0.865 M over 15 seconds.
The rate of change is used to mathematically describe the percentage change in value over a defined period of time, and it represents the momentum of a variable.
[tex]Cl_2(g)+3F_2(g)[/tex]→[tex]2ClF_3(g)[/tex]
Rate of change of [tex]F_2[/tex] = [tex]\frac{Change \;in \;concemtration}{Time}[/tex]
Rate of change of[tex]F_2[/tex] = [tex]\frac{0.950 M-0.865 M}{15 seconds}[/tex]
Rate of change of [tex]F_2[/tex] = 5.6 x [tex]10^{-3}[/tex]
[tex]\frac{Rate of change of F_2}{3}[/tex] =[tex]\frac{Rate \;of c\;hange \;of\;ClF_3}{2}[/tex]
[tex]\frac{5.6 X 10^{-3}}{3}[/tex]=[tex]\frac{Rate \;of \;change \;of \;ClF_3}{2}[/tex]
Rate of change of [tex]ClF_3[/tex] =1.866666667 x2 x[tex]10^{-3}[/tex]
Rate of change of [tex]ClF_3[/tex]= 3.73 x [tex]10^{-3}[/tex]
Hence, 3.73 x[tex]10^{-3}[/tex] the rate of change of [tex]ClF_3[/tex] if the concentration of [tex]F_2[/tex]decreases from 0.950 M to 0.865 M over 15 seconds.
Learn more about the rate of change here:
https://brainly.com/question/2734762
#SPJ1