Respuesta :

The value of the expression [tex]\frac{x^2 + 3y^2}{xy}[/tex] is [tex]\frac{6y^2 + 2xy}{xy}[/tex]

How to solve the expression?

The equation is given as:

[tex]x^2 - 2xy - 3y^2 = 0[/tex]

Add 3y^2 to both sides

[tex]x^2 - 2xy = 3y^2[/tex]

Add 3y^2 to both sides

[tex]x^2 + 3y^2 - 2xy = 6y^2[/tex]

Add 2xy to both sides

[tex]x^2 + 3y^2 = 6y^2 + 2xy[/tex]

Divide through by xy

[tex]\frac{x^2 + 3y^2}{xy} = \frac{6y^2 + 2xy}{xy}[/tex]

Hence, the value of [tex]\frac{x^2 + 3y^2}{xy}[/tex] is [tex]\frac{6y^2 + 2xy}{xy}[/tex]

Read more about equations at:

https://brainly.com/question/2972832

#SPJ1