Question in attached file

The value of the expression [tex]\frac{x^2 + 3y^2}{xy}[/tex] is [tex]\frac{6y^2 + 2xy}{xy}[/tex]
The equation is given as:
[tex]x^2 - 2xy - 3y^2 = 0[/tex]
Add 3y^2 to both sides
[tex]x^2 - 2xy = 3y^2[/tex]
Add 3y^2 to both sides
[tex]x^2 + 3y^2 - 2xy = 6y^2[/tex]
Add 2xy to both sides
[tex]x^2 + 3y^2 = 6y^2 + 2xy[/tex]
Divide through by xy
[tex]\frac{x^2 + 3y^2}{xy} = \frac{6y^2 + 2xy}{xy}[/tex]
Hence, the value of [tex]\frac{x^2 + 3y^2}{xy}[/tex] is [tex]\frac{6y^2 + 2xy}{xy}[/tex]
Read more about equations at:
https://brainly.com/question/2972832
#SPJ1