Answer:
3.25 years (nearest hundredth)
Step-by-step explanation:
Compound Interest Formula
[tex]\large \text{$ \sf A=P\left(1+\frac{r}{n}\right)^{nt} $}[/tex]
where:
Given:
Substitute the given values into the formula and solve for t:
[tex]\implies \sf 4916=4000\left(1+\frac{0.064}{4}\right)^{4t}[/tex]
[tex]\implies \sf 4916=4000\left(1.016\right)^{4t}[/tex]
[tex]\implies \sf \dfrac{4916}{4000}=\left(1.016\right)^{4t}[/tex]
[tex]\implies \sf \dfrac{1229}{1000}=\left(1.016\right)^{4t}[/tex]
[tex]\implies \sf \ln \left(\dfrac{1229}{1000}\right)=\ln \left(1.016\right)^{4t}[/tex]
[tex]\implies \sf \ln \left(\dfrac{1229}{1000}\right)=4t \ln \left(1.016\right)[/tex]
[tex]\implies \sf t=\dfrac{\ln \left(\frac{1229}{1000}\right)}{4\ln \left(1.016\right)}[/tex]
[tex]\implies \sf t=3.247594892...[/tex]
Therefore, it will take 3.25 years (nearest hundredth) for the account to grow to $4916.
Learn more about compound interest here:
https://brainly.com/question/27747709
https://brainly.com/question/27806277