[tex]\Large\Box\underline{\textsf{A. What is Asked}}[/tex]
Evaluate [tex]\bf{\dfrac{1}{12^{-2}}}[/tex]
[tex]\Large\Box\underline{\textsf{B. This problem has been solved!}}[/tex]
[tex]\boxed{\begin{minipage}{9cm} \text{If we have negative exponents in the denominator} \\ \text{we turn over the number,} \\ \text{leaving positive exponents only.} \end{minipage}}[/tex]
Thus,
[tex]\bf{\dfrac{1}{12^{-2}}=\dfrac{12^2}{1}}[/tex]. | see, the negative exponent turned into a positive one as soon as the fraction was turned over.
[tex]\bf{144}[/tex]
[tex]\cline{1-2}[/tex]
[tex]\bf{Result:}[/tex]
[tex]\bf{=144}[/tex]
[tex]\begin{tabular}{c | 1} Expression & Exponent Rule\\\cline{1-2} \\ x^m*x^n & add the powers \\ x^m\div x^n & subtract the powers \\(x^m)^n & multiply the powers \\ x^{-m} & turn over the number \\ x^0 & this equals one\end{tabular}[/tex]
[tex]\LARGE\boxed{\bf{aesthetic\not1\theta\ell}}[/tex]