Use the properties of 30-60-90 and 45-45-90 triangles to solve for x in each of the problems below. Then decode the secret message by matching the answer with the corresponding letter/symbol from the exercises.


The trigonometric function gives the ratio of different sides of a right-angle triangle. The given problems can be solved as given below.
The trigonometric function gives the ratio of different sides of a right-angle triangle.
[tex]\rm Sin \theta=\dfrac{Perpendicular}{Hypotenuse}\\\\\\Cos \theta=\dfrac{Base}{Hypotenuse}\\\\\\Tan \theta=\dfrac{Perpendicular}{Base}\\\\\\Cosec \theta=\dfrac{Hypotenuse}{Perpendicular}\\\\\\Sec \theta=\dfrac{Hypotenuse}{Base}\\\\\\Cot \theta=\dfrac{Base}{Perpendicular}\\\\\\[/tex]
where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.
1st.) x = 5 /Sin(30°)
x = 10
!) sin(45°) = 4/x
x = 4/sin(45°)
x = 4√2
I) Cos(45°) = √3 / x
x = √3 / Cos(45°)
x = √6
E) Tan(60°) = 3√3 / x
x = 3√3 / 3
W) For isosceles right-triangle, the angle made by the legs and the hypotenuse is always 45°.
x = 45°
N) x² + x² = (7√2)²
x = 7
V) Tan(60°) = 7 / x
x = 7√3/3
K) x² + x² = (9)²
x = 9/√2
Y) Sin(60°) = 7√3/x
x = 14
M) Sin(30°) = x/11
x = 11/2
T) Sin(45°) = x/√10
x = √5
A) x + 2x + 90° = 180°
x = 30°
O) Sin(45°) = √2 / x
x = 2
R) Tan(30°) = x / 4
x = 4/√3 = 4√3 / 3
S) Sin(60°) = x / (10/3)
x = 5√3 / 3
Learn more about Trigonometric functions:
https://brainly.com/question/6904750
#SPJ1