Respuesta :
Given
- Initial population of a city - 6.93 million people,
- Growth rate - 2.18% per year.
To find
- a) The exponential growth function,
- b) Population of the city in 2018,
- e) Time when population is 10 million,
- d) The doubling time for population.
Solution
a) The growth function has the form:
- [tex]P(x) = P*(1 + r)^x[/tex],
where:
- P(x) - population after x years,
- P- initial population,
- r - rate of change,
- x - number of years since 2012.
Considering the values we get the function:
- [tex]P(x) = 6.93*(1 + 2.18/100 ) ^x=6.93*1.0218^x[/tex]
b) Number of years between 2012 and 2018 is:
- x = 2018 - 2012 = 6
Find the population, using the above equation:
- [tex]P(6) = 6.93*1.0218^6 = 7.89[/tex] million (rounded)
c) Find the value of x when P(x) = 10 million
- [tex]10 = 6.93*1.0218^x[/tex]
- [tex]1.0218^x = 10/6.93[/tex]
- [tex]1.0218^x=1.443[/tex]
- [tex]log1.0218^x=log1.443[/tex]
- [tex]x = log1.443/log1.0218[/tex]
- [tex]x=17[/tex] years
d) Find the doubling time:
- [tex]2*6.93 =6.93*1.0218^x[/tex]
- [tex]1.0218^x=2[/tex]
- [tex]x=log2/log1.0218[/tex]
- [tex]x=32.14[/tex] years
Answer:
[tex]\textsf{a)} \quad f(x)=6.93(1.0218)^x[/tex]
b) 7.89 million (2 d.p.)
c) 2019
d) 32.14 years (2 d.p.) after 2012
Step-by-step explanation:
Exponential Function
[tex]y=ab^x[/tex]
where:
- a is the initial value (y-intercept)
- b is the base (growth/decay factor) in decimal form
- x is the independent variable
- y is the dependent variable
If b > 1 then it is an increasing function
If 0 < b < 1 then it is a decreasing function
Part (a)
If the exponential growth rate was 2.18% per year, then each year there would be 102.18% of the previous year's population.
⇒ b = 1.0218
Given:
- a = 6.93 million
- b = 1.0218
- x = time (in years after 2012)
- y = population (in millions)
Substitute the given values into the formula to create an exponential growth function:
[tex]f(x)=6.93(1.0218)^x[/tex]
Part (b)
To estimate the population of the city in 2018, determine the value of x:[tex]x = 2018 - 2012 = 6[/tex]
Substitute the found value of x into the found exponential function:
[tex]\implies f(6)=6.93(1.0218)^6=7.89 \: \sf million\:(2\:d.p.)[/tex]
Part (c)
To determine when the population of the city will be 10 million, set the function to 10 and solve for x:
[tex]\implies 6.93(1.0218)^x=10[/tex]
[tex]\implies (1.0218)^x=\dfrac{10}{6.93}[/tex]
[tex]\implies \ln (1.0218)^x= \ln \left(\dfrac{10}{6.93}\right)[/tex]
[tex]\implies x\ln (1.0218)= \ln \left(\dfrac{10}{6.93}\right)[/tex]
[tex]\implies x= \dfrac{\ln \left(\frac{10}{6.93}\right)}{\ln (1.0218)}[/tex]
[tex]\implies x=17.00496413...[/tex]
To find the year, add the found value of x to 2012:
[tex]\implies \sf 2012 + 17.00496413... = 2019[/tex]
Part (d)
To find the doubling time, set the function to double the initial population and solve for x:
[tex]\implies 6.93(1.0218)^x=6.93 \cdot 2[/tex]
[tex]\implies (1.0218)^x=2[/tex]
[tex]\implies \ln (1.0218)^x= \ln (2)[/tex]
[tex]\implies x \ln (1.0218)= \ln (2)[/tex]
[tex]\implies x = \dfrac{\ln (2)}{\ln (1.0218)}[/tex]
[tex]\implies x=32.14107014...[/tex]
Therefore, the doubling time is 32.14 years (2 d.p.) after 2012.