Answer:
Elimination would be a better method for solving the system.
[tex]\Rrightarrow \sf12x+10y=2[/tex]
[tex]\Rrightarrow \sf6x+5y=1.......(i)[/tex]
[tex] \sf\Rrightarrow-x+4y= -5 ............(ii)[/tex]
[tex]\large \sf \red{ \blue{[ (ii)×6]}}[/tex]
[tex]\sf\Rrightarrow-6x+24y= -30 ............(iii)[/tex]
[tex] \large \sf \red{(i) + \blue{ (iii)}}[/tex]
[tex]\Rrightarrow \small\sf6x+5y=1+(-6x+24y= -30)[/tex]
[tex]\Rrightarrow \sf29y = - 29 \\ [/tex]
[tex]\Rrightarrow \blue{\sf \: y = - 1}[/tex]
putting the value in equation (i)
[tex]\Rrightarrow \sf6x+5 \times - 1=1[/tex]
[tex]\Rrightarrow \sf6x - 5=1[/tex]
[tex]\Rrightarrow \sf6x = 6[/tex]
[tex]\Rrightarrow \red{\sf \: x = 1}[/tex]
[tex]\overline{\underline{\rule{209pt}{2pt}}}[/tex]