Respuesta :

Answer:

  • -8

Step-by-step explanation:

[tex] \bf \cfrac{f(x + h) - f(x)}{h} [/tex]

[tex]\bf f(x) -8x + 1[/tex]

[tex]\bf f(x+h) = -8x-8h+1[/tex]

[tex]\bf \cfrac{ - 8x - 8h + 1 + 8x - 1}{h} [/tex]

[tex] \bf =\cfrac{ - 8h}{h} [/tex]

[tex] \bf = - 8[/tex]

▪︎▪︎▪︎▪︎▪︎▪︎▪︎▪︎▪︎▪︎▪︎▪︎

Answer:

Given function:

[tex]f(x) = -8x + 1.[/tex]

Let's find the difference quotient:

[tex]\frac{f(x+h)-f(x)}{h}\\\\= \frac{[-8(x+h)+1] - (-8x + 1)}{h}\\\\= \frac{-8x-8h+1+8x-1}{h}\\\\ = \frac{-8h}{h}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(h\neq 0)\\\\= -8.[/tex]