Answer:
[tex](x-5)^2+(y+4)^2=100[/tex]
Step-by-step explanation:
Equation of a circle
[tex](x-a)^2+(y-b)^2=r^2[/tex]
where:
Given:
Substitute the given values into the circle equation and solve for r:
[tex]\implies r^2=(-3-5)^2+(2-(-4))^2[/tex]
[tex]\implies r^2=(-8)^2+(6)^2[/tex]
[tex]\implies r^2=64+36[/tex]
[tex]\implies r^2=100[/tex]
[tex]\implies r=\sqrt{100}[/tex]
[tex]\implies r=10[/tex]
Substitute the given center and the found value of r into the circle equation to create the equation of the circle:
[tex]\implies (x-5)^2+(y-(-4))^2=10^2[/tex]
[tex]\implies (x-5)^2+(y+4)^2=100[/tex]