The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary Prove that the height of the tower is 6 m.

Kindly help!​

Respuesta :

Answer:

Proof explained below

Step-by-step explanation:

Tan trigonometric ratio

[tex]\sf \tan(\theta)=\dfrac{O}{A}[/tex]

where:

  • [tex]\theta[/tex] is the angle
  • O is the side opposite the angle
  • A is the side adjacent the angle

Draw a diagram to help visualize the scenario (see attached).

If the angles are complementary, their sum is 90°.

Therefore, let one of the angles be [tex]x[/tex] and the other angle be [tex]90^{\circ}-x[/tex].

Use the tan trig ratio to create two equations with the missing side length.

Right triangle ACD

Given:

  • [tex]\theta = x[/tex]
  • O = CD (tower)
  • A = 9 m

Substituting the given values into the tan trig ratio:

[tex]\implies \tan (x)= \dfrac{\textsf{CD}}{9}[/tex]

Right triangle BCD

Given:

  • [tex]\theta = 90^{\circ} - x[/tex]
  • O = CD (tower)
  • A = 4 m

Substituting the given values into the tan trig ratio:

[tex]\implies \tan (90^{\circ} - x)= \dfrac{\textsf{CD}}{4}[/tex]

[tex]\textsf{As }\:\tan(90^{\circ} - x)= \cot (x):[/tex]

[tex]\implies \cot(x)= \dfrac{\textsf{CD}}{4}[/tex]

[tex]\implies \dfrac{1}{\tan(x)}= \dfrac{\textsf{CD}}{4}[/tex]

[tex]\implies \tan(x)= \dfrac{4}{\textsf{CD}}[/tex]

Therefore, the two equations are:

  [tex]\textsf{Equation 1}: \quad \tan (x)= \dfrac{\textsf{CD}}{9}[/tex]

  [tex]\textsf{Equation 2}: \quad \tan(x)= \dfrac{4}{\textsf{CD}}[/tex]

Substitute one equation into the other and solve for CD:

[tex]\implies \sf \dfrac{CD}{9}=\dfrac{4}{CD}[/tex]

[tex]\implies \sf CD \cdot CD= 4 \cdot 9[/tex]

[tex]\implies \sf CD^2=36[/tex]

[tex]\implies \sf CD=\sqrt{36}[/tex]

[tex]\implies \sf CD= \pm 6[/tex]

As distance cannot be negative, CD = 6 m only, thus proving that the height of the tower is 6 m.

Ver imagen semsee45