Respuesta :

Answer:

C. 2y²

Step-by-step explanation:

[tex] \sf{( {3}^{0}y) {}^{2} \times 2(xy {)}^{0} = }[/tex]

  • [tex] \boxed{\sf{X^{0} = 1}} [/tex]

[tex]\sf{ = (\red{1} \times y)^{2} \times (2 \times \red{1}) }[/tex]

[tex]\sf{ = (y)^{2} \times 2 }[/tex]

[tex]\sf{ =2 {y}^{2} }[/tex]

Answer:

[tex]\textsf{C.} \quad 2y^2[/tex]

Step-by-step explanation:

Given:

[tex](3^0y)^2 \times 2(xy)^0[/tex]

[tex]\textsf{Apply exponent rule} \quad a=a^1:[/tex]

[tex](3^0y^1)^2 \times 2(x^1y^1)^0[/tex]

[tex]\textsf{Apply exponent rule} \quad(a^n)^c=a^{nc} \implies (a^nb^n)^c=a^{nc}b^{nc}:[/tex]

[tex]\implies 3^{(0 \times 2)}y^{(1 \times 2)} \times 2 \left(x^{(1 \times 0)}y^{(1 \times 0)} \right)[/tex]

[tex]\implies 3^0y^2 \times 2\left(x^0y^0\right)[/tex]

[tex]\textsf{Apply exponent rule} \quad a^0=1:[/tex]

[tex]\implies (1)y^2 \times 2\left(1 \times 1 \right)[/tex]

Simplify:

[tex]\implies (1)y^2 \times 2(1)[/tex]

[tex]\implies y^2 \times 2[/tex]

[tex]\implies 2y^2[/tex]