Question 5 of 10
What is the first step in solving a quadratic equation of the form given below?
(ax+ b)² = c
O A. Divide both sides by c
OB. Factor out a common factor
OC. Use the zero product rule
OD. Take the square root of both sides

Respuesta :

Answer:

D

Step-by-step explanation:

(ax + b)² = c

step 1 : take square root of both sides

ax + b = ± [tex]\sqrt{c}[/tex]

step 2 : subtract b from both sides

ax = - b ± [tex]\sqrt{c}[/tex]

step 3 : divide both sides by a

x = - [tex]\frac{b}{a}[/tex] ± [tex]\frac{\sqrt{c} }{a}[/tex]

Answer:

D. Take the square root of both sides

Step-by-step explanation:

Given quadratic equation:

[tex](ax+b)^2=c[/tex]

To solve, square root both sides:

[tex]\implies \sqrt{(ax+b)^2}=\sqrt{c}[/tex]

[tex]\textsf{Apply radical rule} \quad \sqrt{n^2}=n, \quad \textsf{assuming }n \geq 0:[/tex]

[tex]\implies ax+b=\pm\sqrt{c}[/tex]

Subtract b from both sides:

[tex]\implies ax=-b\pm\sqrt{c}[/tex]

Divide both sides by a:

[tex]\implies x=\dfrac{-b\pm\sqrt{c}}{a}, \quad a\neq 0[/tex]