Respuesta :

Answer:

  -4sin(2x)

Step-by-step explanation:

Angle sum identities can be used to simplify this expression.

  • cos(a+b) = cos(a)cos(b) -sin(a)sin(b)
  • sin(a+b) = sin(a)cos(b) +sin(b)cos(a)
  • sin(2x) = 2sin(x)cos(x)

Numerator

The cosine function is even, so cos(-x) = cos(x). The cosine of the sum is ...

  cos(90°+x) = cos(90°)cos(x) -sin(90°)sin(x) = -sin(x)

Then the numerator simplifies to ...

  4cos(-x)cos(90°+x) = -4cos(x)sin(x) = -2sin(2x)

Denominator

Matching the denominator expression to the sine of a sum relation, we see

  sin(30° -x)cos(x) +sin(x)cos(30° -x) = sin((30°-x) +x) = sin(30°) = 1/2

Simplified Expression

The simplified expression is the ratio of the simplified numerator to the simplified denominator:

  = -sin(2x)/(1/2)

  = -4sin(2x)