Respuesta :

By applying logarithm laws and the relationship between logarithms and powers of same base, the expression [tex]\log_{2} \frac{8\cdot x^{3}}{2} = \log_{2} 8\cdot x^{3} - \log_{2} 2\cdot y[/tex] is equal to y = 1.

How to simplify a logarithmic expressions

Herein we must simplify an expression that uses logarithms by applying any of the following three laws:

[tex]\log_{a} (b \cdot c) = \log_{a} b + \log_{a} c[/tex]      (1)

[tex]\log_{a} \left(\frac{b}{c} \right) = \log_{a} b - \log_{a} c[/tex]     (2)

[tex]\log_{a}{b^{c}} = c \cdot \log_{a} b[/tex]     (3)

Now we proceed to simplify the expression:

[tex]\log_{2} \frac{8\cdot x^{3}}{2} = \log_{2} 8\cdot x^{3} - \log_{2} 2\cdot y[/tex]

[tex]\log_{2} 2\cdot y = \log_{2} 8\cdot x^{3} - \log_{2} \frac{8\cdot x^{3}}{2}[/tex]

[tex]\log_{2} 2 \cdot y = \log_{2} \frac{\frac{8\cdot x^{3}}{1} }{\frac{8\cdot x^{3}}{2} }[/tex]

[tex]\log_{2} 2\cdot y = \log_{2} 2[/tex]

By the relationship between logarithms and powers of same base:

2 · y = 2

y = 1

By applying logarithm laws and the relationship between logarithms and powers of same base, the expression [tex]\log_{2} \frac{8\cdot x^{3}}{2} = \log_{2} 8\cdot x^{3} - \log_{2} 2\cdot y[/tex] is equal to y = 1.

To learn more on logarithms: https://brainly.com/question/20785664

#SPJ1