20 points!!
Show that for any real numbers a and b, and any integers x and y so that x≠0, y≠0, x≠y, and x≠-y,
(y/x-x/y)((ax+by)/(x+y)-(ax-by)/(x-y))=2(a-b).

Respuesta :

See below for the proof of the equation [tex]\frac{ax + by}{x + y} - \frac{ax - by}{x - y}= 2(a - b)[/tex]

How to prove the equation?

The equation is given as:

[tex]\frac{ax + by}{x + y} - \frac{ax - by}{x - y}= 2(a - b)[/tex]

Take the LCM

[tex]\frac{(ax + by)(x - y) -(ax - by)(x + y)}{(x + y)(x - y)}= 2(a - b)[/tex]

Expand

[tex]\frac{ax^2 - axy + bxy - by^2 -ax^2 - axy + bxy + by^2}{(x + y)(x - y)}= 2(a - b)[/tex]

Evaluate the like terms

[tex]\frac{-2axy + 2bxy }{(x + y)(x - y)}= 2(a - b)[/tex]

Rewrite as:

[tex]\frac{-2axy + 2bxy }{x^2 - y^2}= 2(a - b)[/tex]

Factorize the numerator

[tex]\frac{2(a - b)(x^2 - y^2)}{x^2 - y^2}= 2(a - b)[/tex]

Divide

2(a - b)= 2(a - b)

Both sides are equal

Hence, the equation [tex]\frac{ax + by}{x + y} - \frac{ax - by}{x - y}= 2(a - b)[/tex] has been proved

Read more about equations at:

https://brainly.com/question/2972832

#SPJ1