Which expression is equivalent to the following complex fraction? StartFraction 2 Over x EndFraction minus StartFraction 4 Over y EndFraction divided by StartFraction negative 5 Over y EndFraction + StartFraction 3 Over x EndFraction StartFraction 3 y + 5 x Over 2 (y minus 2 x) EndFraction StartFraction 2 (y minus 2 x) Over 3 y minus 5 x EndFraction StartFraction 2 (y minus 2 x) (3 y minus 5 x) Over x squared y squared EndFraction StartFraction x squared y squared Over 2 (y minus 2 x) (3 y minus 5 x) EndFraction

Respuesta :

The equivalent expression of [tex]\frac{\frac 2x - \frac 4y}{-\frac 5y + \frac 3x}[/tex] is [tex]\frac {2(y - 2x)}{ 3y-5x}[/tex]

How to determine the equivalent expression?

The complete question is in the attached image

We have:

[tex]\frac{\frac 2x - \frac 4y}{-\frac 5y + \frac 3x}[/tex]

Take the LCM

[tex]\frac{\frac {2y - 4x}{xy}}{\frac{-5x + 3y}{xy}}[/tex]

Divide through by xy

[tex]\frac {2y - 4x}{-5x + 3y}[/tex]

Rewrite as:

[tex]\frac {2y - 4x}{ 3y-5x}[/tex]

Factor out 2

[tex]\frac {2(y - 2x)}{ 3y-5x}[/tex]

Hence, the equivalent expression of [tex]\frac{\frac 2x - \frac 4y}{-\frac 5y + \frac 3x}[/tex] is [tex]\frac {2(y - 2x)}{ 3y-5x}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/24734894

#SPJ1

Ver imagen MrRoyal