[tex]\boxed{\bf{Help\;Please}}[/tex]
______________________
[tex]\boxed{\bf{Answer\;Requirements-:}}[/tex]
No spam
No absurd answers
[tex]\bf{Only}[/tex]
People who are good at Trigonometry
[tex]\bf{should\;answer}[/tex]

texboxedbfHelpPleasetex texboxedbfAnswerRequirementstex No spam No absurd answers texbfOnlytex People who are good at Trigonometry texbfshouldanswertex class=

Respuesta :

Answer:

There you go:

[tex]y = 4 \cos(4\pi \: t + \frac{\pi}{4} ) [/tex]

[tex]y = a\cos(w\: t + \alpha ) [/tex]

[tex]w = 4\pi[/tex]

[tex]2\pi \: f = 4\pi[/tex]

[tex]f = 2[/tex]

Answer:

[tex]\displaystyle 2[/tex]

Step-by-step explanation:

[tex]\displaystyle y = Acos(Bx - C) + D[/tex]

When working with a trigonometric equation like this, always remember the information below:

[tex]\displaystyle Vertical\:Shift \hookrightarrow D \\ Horisontal\:[Phase]\:Shift \hookrightarrow \frac{C}{B} \\ Wavelength\:[Period] \hookrightarrow \frac{2}{B}\pi \\ Amplitude \hookrightarrow |A|[/tex]

So, the first procedure is to find the period of this graph, and when calculated, you should arrive at this:

[tex]\displaystyle \boxed{\frac{1}{2}} = \frac{2}{4\pi}\pi[/tex]

You will then plug this into the frequency formula, [tex]\displaystyle T^{-1} = F.[/tex] Look below:

[tex]\displaystyle \frac{1}{2}^{-1} = F \\ \\ \boxed{2 = F}[/tex]

Therefore, the frequency of motion is two hertz.

I am delighted to assist you at any time.