[tex]\boxed{\bf{Help\;please}}[/tex]
____________________
[tex]\boxed{\bf{Answer\;Requirements-:}}[/tex]
No spam
No absurd answers
[tex]\bf{Only[/tex]
People who are good at trig
[tex]\bf{should\;answer}[/tex]

texboxedbfHelppleasetex texboxedbfAnswerRequirementstex No spam No absurd answers texbfOnlytex People who are good at trig texbfshouldanswertex class=

Respuesta :

Answer:

-8m

Step-by-step explanation:

This question only requires to to substitute t = 0 and t = 1 into the equation to find the displacement.

Lets find the displacement at t = 0.

[tex]x(0)=4sin(\pi (0)+\frac{\pi }{2} )\\=4sin(\frac{\pi }{2} )\\= 4m[/tex]

Lets find the displacement at t = 1.

[tex]x(1) = 4sin(\pi (1)+\frac{\pi }{2} )\\=4sin(\pi +\frac{\pi }{2} )\\=-4m[/tex]

Total displacement = Final Position - Initial Position

= x(1)-x(0)

= -4m - 4m

= -8m