Respuesta :

Answer:

In interval notation, the solution of |3 x-2|<7 is [tex]$-\frac{5}{3} < x < 3$[/tex] or [tex]$\left\{-\frac{5}{3}, 3\right\}$[/tex].

Step-by-step explanation:

The given absolute value function is |3 x-2|<7.

It is required to solve the inequality and express the solution using interval notation. -B<x-A<B and solving them separately for x

Step 1 of 3

Given absolute value equation is |3 x-2|<7.

It can be written as -7<3 x-2<7.

To solve for the equality, 3x-2=7 and

[tex]$3 x-2=-7$[/tex]

First, solve the equation 3x-2=7, then add 2 on both sides.

[tex]$\begin{aligned}&3 x=7+2 \\&3 x=9\end{aligned}$[/tex]

Step 2 of 3

Simplify 3x=9 further, by dividing each side with 3 .

[tex]$\begin{aligned}&\frac{3 x}{3}=\frac{9}{3} \\&x=3\end{aligned}$[/tex]

Step 3 of 3

Similarly, 3x-2=-7

From the above term 3x-2=-7,

Add 2 on each side.

[tex]$\begin{aligned}&3 x=-7+2 \\&3 x=-5\end{aligned}$[/tex]

Simplify $3 x=-5$ further, by dividing each side with 3 .

[tex]$\begin{aligned}&\frac{3 x}{3}=-\frac{5}{3} \\&x=-\frac{5}{3}\end{aligned}$[/tex]

Therefore, the solution is [tex]$-\frac{5}{3} < x < 3$[/tex] or [tex]$\left\{-\frac{5}{3}, 3\right\}$[/tex]