Respuesta :

Answer:

The value of [tex]$(f \circ g)(x)$[/tex] is 17-18x and [tex]$(g \circ f)(x)$[/tex] is -7-18x.

Step-by-step explanation:

It is given in the question functions f(x) as 3x+2 and g(x)=5-6x.

It is required to find [tex]$(f \circ g)(x)$[/tex] and [tex]$(g \circ f)(x)$[/tex].

To find [tex]$(f \circ g)(x)$[/tex], substitute g(x) for x in f(x) and simplify the expression.

To find [tex]$(g \circ f)(x)$[/tex], substitute f(x) for x in g(x) and simplify the expression.

Step 1 of 2

Substitute g(x) for x in f(x) and simplify the expression.

[tex]$\begin{aligned}&(f \circ g)(x)=f(5-6 x) \\&(f \circ g)(x)=3(5-6 x)+2 \\&(f \circ g)(x)=15-18 x+2 \\&(f \circ g)(x)=17-18 x\end{aligned}$[/tex]

Step 2 of 2

Substitute f(x) for x in g(x) and simplify the expression.

[tex]$\begin{aligned}&(g \circ f)(x)=g(3 x+2) \\&(g \circ f)(x)=5-6(3 x+2) \\&(g \circ f)(x)=5-18 x-12 \\&(g \circ f)(x)=-7-18 x\end{aligned}$[/tex]