Respuesta :
Answer:
The equation of the unknown line is [tex]$g(x)=-\frac{1}{3} x+6$[/tex].
Step-by-step explanation:
In the question, it is given that a line passes through (-2,-15) and (2,-3). Another line perpendicular to the first line passes through (6,4).
It is required to find the equation of the second line. of b and substitute all these values to find the equation of second line.
Step 1 of 2
Find the slope of first line.
[tex]$\begin{aligned}&m_{1}=\frac{-3-(-15)}{2-(-2)} \\&m_{1}=\frac{12}{4} \\&m_{1}=3\end{aligned}$[/tex]
Therefore, the slope of second line is [tex]$m_{2}$[/tex].
[tex]$m_{2}=-\frac{1}{3}$[/tex]
Step 2 of 2
Substitute the values of [tex]$m_{2}[/tex],x and g(x) to find the b.
[tex]$\begin{aligned}&g(x)=m x+b \\&4=-\frac{1}{3}(6)+b \\&b=4+2 \\&b=6\end{aligned}$[/tex]
Therefore, the equation of the unknown line is [tex]$g(x)=-\frac{1}{3} x+6$[/tex].
Step 1 of 2
Find the slope of first line.
[tex]$\begin{aligned}&m_{1}=\frac{-3-(-15)}{2-(-2)} \\&m_{1}=\frac{12}{4} \\&m_{1}=3\end{aligned}$[/tex]
Therefore, the slope of second line is [tex]$m_{2}$[/tex].
[tex]$m_{2}=-\frac{1}{3}$[/tex]
Step 2 of 2
Substitute the values of [tex]$m_{2}[/tex], x and g(x) to find the b.
[tex]$\begin{aligned}&g(x)=m x+b \\&4=-\frac{1}{3}(6)+b \\&b=4+2 \\&b=6\end{aligned}$[/tex]
Therefore, the equation of the unknown line is [tex]$g(x)=-\frac{1}{3} x+6$[/tex].