Part (a):
[tex]\mathbb P(400<X<700)=\mathbb P\left(\dfrac{400-550}{100}<\dfrac{X-550}{100}<\dfrac{700-550}{100}\right)[/tex]
[tex]=\mathbb P(-1.5<Z<1.5)[/tex]
[tex]=\mathbb P(Z<1.5)-\mathbb P(Z<-1.5)[/tex]
[tex]\approx0.9332-0.0668=0.8664=86.64\%[/tex]
Part (b):
[tex]\mathbb P(450<X<650)=\mathbb P(-1<Z<1)\approx0.68[/tex]
So if 1000 students make up 68% of the total student body, then there are [tex]0.68x=1000\implies x\approx1471[/tex] total students. You then have
[tex]\mathbb P(500<X<600)=\mathbb P(-0.5<Z<0.5)\approx0.3829[/tex]
as the proportion of students scoring between 500 and 600. Of the 1471 or so students, this amounts to about 563 students.