Respuesta :

Setor9
Four values that make the expression factorable will be, 2, -4, -18 and -28.

Answer:

2, -4, -10 and -18.

Step-by-step explanation:

The given expression is

[tex]x^2-3x+b[/tex]      ...(i)

We need to find the 4 values of b which make the expression factorable.

A polynomial is factorable if both roots are real.

If [tex]\alpha \text{ and }\beta[/tex] are two real roots of a polynomial, then the polynomial is defined as

[tex]P(x)=x^2-(\alpha+\beta)x+\alpha\beta[/tex]         ....(ii)

From (i) and (ii), we get

[tex]\alpha+\beta=3[/tex]     ...(iii)

[tex]\alpha\beta=b[/tex]

For equation (iii), possible pairs of [tex]\alpha \text{ and }\beta[/tex] are (2,1), (4,-1), (5,-2) and (6,-3).

From these ordered pairs the values of b are

[tex]b=\alpha\beta=2\times 1=2[/tex]

[tex]b=\alpha\beta=4\times (-1)=-4[/tex]

[tex]b=\alpha\beta=5\times (-2)=-10[/tex]

[tex]b=\alpha\beta=6\times (-3)=-18[/tex]

Therefore, the four possible values of b are 2, -4, -10 and -18.