∠A and ∠C are right angles. m∠p = _???_ degrees.

Answer
Find out the m∠p .
To prove
As in ΔDAB is a right triangle
Apply pythagorean theorem
Hypotenuse ² = Perpendicular ² + Base²
DB² = AB² + AD²
AB = 5 units
AD = 6 units
Put in the above formula
DB² = 5² + 6²
= 25 + 36
= 61
[tex]DB = \sqrt{61}\ units[/tex]
= 7.8 units (approx)
Now in ΔDCB is a right triangle .
By using the trignometric identity .
[tex]cosp = \frac{Base}{Hypotenuse}[/tex]
[tex]cosp = \frac{DC}{DB}[/tex]
As DC = 4 units
DB = 7.8 units (approx)
Put all the values in the trignometric identity .
[tex]cos p = \frac{4}{7.8}[/tex]
[tex]\angle p = cos^{-1}(\frac{4}{7.8})[/tex]
∠p = 59.15 ° (approx)