Respuesta :
When you draw a diagonal between two vertices of a rectangle, two triangles are formed. So to find the length of the diagonal, find the hypotenuse of one of the triangles:
a^2 + b^2 = c^2
8^2 + 15^2 = c^2
64 + 225 = c^2
c^2 = 289
c = 17 feet (option D)
a^2 + b^2 = c^2
8^2 + 15^2 = c^2
64 + 225 = c^2
c^2 = 289
c = 17 feet (option D)
The Pythagorean Theorem states that: "the sum of the squares of the legs is equal to the square of the hypotenuse."
a² + b² = c²
Note¹: Hypotenuse is the side opposite the right angle.
Note²: The legs are the sides that are not opposite the right angle.
Data:
wide (a) = 8
long (b) = 15
diagonal (c) = ?
Solving:
a² + b² = c²
8² + 15² = c²
64 + 225 = c²
289 = c²
c² = 289
[tex]c = \sqrt{289} [/tex]
[tex]\boxed{\boxed{c = 17\:feet}}\end{array}}\qquad\quad\checkmark[/tex]
Answer:
[tex]\underline{\underline{D)\:17\:feet}}[/tex]
a² + b² = c²
Note¹: Hypotenuse is the side opposite the right angle.
Note²: The legs are the sides that are not opposite the right angle.
Data:
wide (a) = 8
long (b) = 15
diagonal (c) = ?
Solving:
a² + b² = c²
8² + 15² = c²
64 + 225 = c²
289 = c²
c² = 289
[tex]c = \sqrt{289} [/tex]
[tex]\boxed{\boxed{c = 17\:feet}}\end{array}}\qquad\quad\checkmark[/tex]
Answer:
[tex]\underline{\underline{D)\:17\:feet}}[/tex]