Which list shows fractions that always result in a terminating decimal for values of n > 0?

CLEAR SUBMIT

1111,121,11,331 ...,111n1111,121,11,331 ...,111n

1101,100,11,000 ...,110n1101,100,11,000 ...,110n

161,361216...,16n161,361216...,16n

131,9127...,13n

Respuesta :

I'all say the 2 line because if all those zeros are there then it will add to a zero. and Happy Valentine dat

A terminating decimal is such that has an end.

The list that shows fractions that lead to terminating decimals is:

[tex]\frac{1}{10}, \frac{1}{100}, \frac{1}{1000} . . . , \frac{1}{10n}[/tex]

To do this, we put each of the options to a test, till we get the true option

[tex](a)\ \frac{1}{11}, \frac{1}{121}, \frac{1}{1331} . . . , \frac{1}{11n}[/tex]

Test the first term

[tex]\frac{1}{11} = 0.0909.....[/tex] ---  The dots after 0.0909 means that the decimal has no end

[tex](b)\ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000} . . . , \frac{1}{10n}[/tex]

Test the first term

[tex]\frac{1}{10} = 0.1[/tex] ---  This decimal has an end. It terminates at 1 decimal place

And this is true for all the remaining set in the list

Hence, the list that shows terminating decimals:

[tex](b)\ \frac{1}{10}, \frac{1}{100}, \frac{1}{1000} . . . , \frac{1}{10n}[/tex]

Read more about terminating decimals at:

https://brainly.com/question/16616686