Respuesta :
[tex]\dfrac\sigma{\sqrt n}=\dfrac{0.75}{\sqrt{35}}\approx0.13[/tex]
Answer:
The standard error of the mean of the sample is 0.13 hours.
Step-by-step explanation:
We are given that,
Standard deviation of the distribution, σ = 0.75 hours
Total number of people in the sample, n = 35
Since, the standard error of the mean is given by,
[tex]SE=\dfrac{Standard\ Deviation}{\sqrt{Total\ sample}}\\\\SE=\dfrac{\sigma}{\sqrt{n}}[/tex]
Thus, the standard error for the given sample is,
[tex]SE=\dfrac{0.75}{\sqrt{35}}=\dfrac{0.75}{5.92}=0.13[/tex]