Respuesta :

Step-by-step explanation:

[tex]y = 6u {}^{3} + 5u + 2[/tex]

[tex]y = 6( - 3 {x}^{2} - 4x + 9) {}^{3} + 5( - 3 {x}^{2} - 4x + 9) + 2[/tex]

Use the chain rule.

[tex] \frac{dy}{dx} = 6(3)( - 3 {x}^{2} - 4x + 9) {}^{2} ( - 6x - 4) + 5( - 6x - 4)[/tex]

[tex]18( - 3 {x}^{2} - 4x + 9) {}^{2} ( - 6x - 4) + 5( - 6x - 4)[/tex]

Factor out -6x-4,

[tex]( - 6x - 4)(18( - 3 {x}^{2} - 4x + 9) {}^{2} + 5)[/tex]

Know plug in x=-2 to evaluate the derivative

[tex]( - 6(2) - 4)(18( - 3(2) {}^{2} - 4(2) + 9) {}^{2} + 5)[/tex]

[tex]( - 16)(18(( - 12) - 8 + 9)) {}^{2} + 5)[/tex]

[tex] - 16(18( - 11) {}^{2} + 5)[/tex]

[tex] - 16(2183)[/tex]

[tex] - 34928[/tex]