Respuesta :
[tex]av = \frac{v_{2} - v_{1}}{t_{2} - t_{1}} [/tex]
[tex] t_{1} = \frac{d}{v_{1}} = \frac{240}{60} = 4 \: hours \\ t_{2} = \frac{d}{v_{2}} = \frac{240}{40} = 6 \: hours[/tex]
[tex]av = \frac{v_{2} - v_{1}}{t_{2} - t_{1}} = \frac{40 - 60}{6 - 4} = \frac{ - 20}{2} = - 10[/tex]
[tex]av \: speed= 10 \\ av \: velocity = - 10 \: \: north[/tex]
Answer:
48 mph
Step-by-step explanation:
Distance = rate x time
Going: Rate is 60 mph distance is 240
The time is the [tex]\frac{Distance}{rate}[/tex] or [tex]\frac{240}{60}[/tex] or 4 hours.
Coming: Rate is 40 mph distance is 240
The time is the [tex]\frac{distance}{rate}[/tex] or [tex]\frac{240}{40}[/tex] or 6 hours.
We can now find the average.
Average rate = [tex]\frac{total distance}{total time}[/tex] = [tex]\frac{480}{10}[/tex] = 48 mph