Respuesta :
Answer:
3 million dollars
Step-by-step explanation:
Given probability distribution table:
[tex]\begin{array}{|l|c|c|c|c|c|}\cline{1-6} \text{Profit (in millions)} & 1 & 1.5 & 2 & 4 & 10\\\cline{1-6} \text{Probability} & 0.1 & 0.2 & 0.4 & 0.2 & 0.1\\\cline{1-6}\end{array}[/tex]
Expected Value formula:
[tex]\displaystyle E(x)=\sum x_iP(x_i)[/tex]
where:
- [tex]x_i[/tex] = all possible values for the random variable
- [tex]P(x_i)[/tex] = respective theoretical probability
Let x = Profit (in millions)
Use the expected value formula to find the expected value:
[tex]\begin{aligned}E(x) & = 1(0.1)+1.5(0.2)+2(0.4)+4(0.2)+10(0.1)\\& = 0.1 + 0.3+0.8+0.8+1\\& = 3\end{aligned}[/tex]
Therefore, the expected value of the profit is 3 million dollars.
Answer:
3 million dollars
Step-by-step explanation:
jus got it right