Respuesta :
Answer:
7[tex]a^{8}[/tex]
Step-by-step explanation:
the area (A) of a square is calculated as
A = s² ( s is the side length )
here A = 49[tex]a^{16}[/tex] , then
s² = 49[tex]a^{16}[/tex] ( take square root of both sides )
s = [tex]\sqrt{49a^{16} }[/tex] = [tex]\sqrt{49}[/tex] × [tex]\sqrt{a^{16} }[/tex] = 7[tex]a^{8}[/tex]
Answer:
Length of each side is [tex]\displaystyle{7a^8}[/tex].
Step-by-step explanation:
Area of Square
[tex]\displaystyle{A = s^2}[/tex]
where A stands for area and s stands for side.
Given that a square has area of [tex]\displaystyle{49a^{16} \ \sf{cm^2}}[/tex]. We can substitute [tex]\displaystyle{A = 49a^{16}}[/tex] in the area equation:
[tex]\displaystyle{49a^{16} = s^2}[/tex]
Solve the equation for s; square root both sides:
[tex]\displaystyle{\sqrt{49a^{16}} = \sqrt{s^2}}\\\\\displaystyle{\sqrt{49a^{16}} = s}\\\\\displaystyle{\sqrt{7^2\left(a^{8}\right)^2} = s}\\\\\\\displaystyle{\sqrt{\left(7a^8\right)^2} = s}\\\\\displaystyle{7a^8 = s}[/tex]
Therefore, length of each side is [tex]\displaystyle{7a^8}[/tex].