Respuesta :

Answer:

[tex]\frac{\sqrt{2-\sqrt{3}}}{2}[/tex]

Step-by-step explanation:

since 75 is half of 150, we can use the half angle formula of cos defined as: [tex]cos(\frac{\theta}{2}) = \sqrt{\frac{1+cos(\theta)}{2}}\\[/tex] where theta=150

So plugging in the values we get:

[tex]cos(75) = \sqrt{\frac{1+cos(150)}{2}}[/tex]

Now using the unit circle, we can solve for cos(150)

[tex]cos(75) = \sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}\\[/tex]

Now multiply the 1 by 2/2 to combine the numerator into one fraction

[tex]cos(75) = \sqrt{\frac{\frac{2}{2}-\frac{\sqrt{3}}{2}}{2}\\[/tex]

Combine the numerator into one fraction

[tex]cos(75) = \sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2}\\[/tex]

Keep, change, flip

[tex]cos(75) = \sqrt{\frac{2-\sqrt{3}}{2}*\frac{1}{2}}[/tex]

Multiply:
[tex]cos(75) = \sqrt{\frac{2-\sqrt{3}}{4}[/tex]

We can distribute the square root across the division:

[tex]\frac{\sqrt{2-\sqrt{3}}}{\sqrt{4}}[/tex]

Simplify the denominator

[tex]\frac{\sqrt{2-\sqrt{3}}}{2}[/tex]