Answer:
10 days
Step-by-step explanation:
Hello!
We basically have to plug in 4 for g and solve for the value of t.
Solve for T
- [tex]g = 1024(\frac12)^{\frac{t}{30}}[/tex]
- [tex]4 = 1024(\frac12)^{\frac{t}{30}}[/tex]
- [tex]\frac{4}{1024} = (\frac12)^{\frac{t}{30}}[/tex]
- [tex]\frac{1}{256} =( \frac12)^{\frac{t}{30}[/tex]
Using exponent rules, exponents with the same base have the same power. We can utilize this rule by converting 1/256 into an exponent with a base of 1/2.
- [tex]\frac{1}{256} =( \frac12)^{\frac{t}{30}[/tex]
- [tex](\frac12)^8 =( \frac12)^{\frac{t}{30}[/tex]
- [tex]8 = \frac{t}{30}[/tex]
- [tex]240 = t[/tex]
It will take 240 hours for there to be 4 grams remaining. To convert this into days, we have to divide by 24.
So it will take 10 days for 4 g to remain.