Respuesta :
Since no heat is lost to the surroundings, the change in thermal energy of the brass piece and the water sample have have the same magnitude:
m_brass ∙ c_brass ∙ ∆T_brass = m_water ∙ c_water ∙ ∆T_water
=>
c_brass = c_water ∙ (m_water/m_brass) ∙ (∆T_water/∆T_brass)
= 4186J/kg°C ∙ (2.8kg/0.59kg) ∙ ((6.8°C - 5°C) / (98°C - 6.8°C))
= 392J/kg
m_brass ∙ c_brass ∙ ∆T_brass = m_water ∙ c_water ∙ ∆T_water
=>
c_brass = c_water ∙ (m_water/m_brass) ∙ (∆T_water/∆T_brass)
= 4186J/kg°C ∙ (2.8kg/0.59kg) ∙ ((6.8°C - 5°C) / (98°C - 6.8°C))
= 392J/kg
The specific heat capacity of brass will be "392 J/Kg".
According to the question,
- Mass of brass, [tex]m_{brass} = 0.59 \ kg[/tex]
- Mass of water, [tex]m_{water} = 2.80 \ kg[/tex]
As we know,
→ [tex]m_{brass}\times c_{brass}\times \Delta T_{brass} = m_{water}\times c_{water}\times \Delta T_{water}[/tex]
or,
→ [tex]c_{brass} = c_{water}\times (\frac{m_{water}}{m_{brass}} )\times (\frac{\Delta T_{water}}{\Delta T_{brass}} )[/tex]
By substituting the above values, we get
[tex]= 4186\times \frac{2.8}{0.59}\times (\frac{6.8-5}{98^{\circ} C-6.8^{\circ} C} )[/tex]
[tex]= 392 \ J/Kg[/tex]
Thus the above answer is right.
Learn more about brass here:
https://brainly.com/question/8981115