Respuesta :

lukyo
If you're using the app, try seeing this answer through your browser:  https://brainly.com/question/2822772

_______________


Evaluate the indefinite integral:

[tex]\mathsf{\displaystyle\int\! \frac{cos\,x}{sin^2\,x}\,dx}\\\\\\ =\mathsf{\displaystyle\int\! \frac{1}{(sin\,x)^2}\cdot cos\,x\,dx\qquad\quad(i)}[/tex]


Make the following substitution:

[tex]\mathsf{sin\,x=u\quad\Rightarrow\quad cos\,x\,dx=du}[/tex]


and then, the integral (i) becomes

[tex]=\mathsf{\displaystyle\int\! \frac{1}{u^2}\,du}\\\\\\ =\mathsf{\displaystyle\int\! u^{-2}\,du}[/tex]


Integrate it by applying the power rule:

[tex]\mathsf{=\dfrac{u^{-2+1}}{-2+1}+C}\\\\\\ \mathsf{=\dfrac{u^{-1}}{-1}+C}\\\\\\ \mathsf{=-\,\dfrac{1}{u}+C}[/tex]


Now, substitute back for u = sin x, so the result is given in terms of x:

[tex]\mathsf{=-\,\dfrac{1}{sin\,x}+C}\\\\\\ \mathsf{=-\,csc\,x+C}[/tex]


[tex]\therefore~~\boxed{\begin{array}{c}\mathsf{\displaystyle\int\! \frac{cos\,x}{sin^2\,x}\,dx=-\,csc\,x+C} \end{array}}\qquad\quad\checkmark[/tex]


I hope this helps. =)


Tags:  indefinite integral substitution trigonometric trig function sine cosine cosecant sin cos csc differential integral calculus