Respuesta :
If the equilibrium is such that only 12000 units are sold for $27, then the total earnings from the given scenario is $324,000. The supply equation would then be,
supply: 324000 = 6p ; p = 324000/6 = 54000
demand: 324000 = 69p ; p = 324000/69 = 4695.65 ≈ 4696
supply: 324000 = 6p ; p = 324000/6 = 54000
demand: 324000 = 69p ; p = 324000/69 = 4695.65 ≈ 4696
The demand and the supply equations are [tex]p = \frac{-24000 + 4000q }{7}[/tex] and [tex]p = \frac{138000 - 2000q }{7}[/tex]
How to determine the equations
At the equilibrium point, we have:
(p,q) = (12000, 27)
On the supply equation, we have:
(p,q) = (0, 6)
So, we start by calculating the slope:
[tex]m = \frac{q_2 - q_1}{p_2 -p_1}[/tex]
This gives
[tex]m = \frac{6 - 27}{0 - 12000}[/tex]
[tex]m = \frac{21}{12000}[/tex]
Simplify
[tex]m = \frac{7}{4000}[/tex]
The supply equation is then calculated as:
[tex]q = m(p - p_1) + q_1[/tex]
So, we have:
[tex]q = \frac{7}{4000}(p - 0) + 6[/tex]
[tex]q = \frac{7}{4000}p + 6[/tex]
Subtract 6 from both sides
[tex]-6 + q = \frac{7}{4000}p[/tex]
Multiply through by 4000
[tex]-24000 + 4000q = 7p[/tex]
Rewrite as:
[tex]7p = -24000 + 4000q[/tex]
Solve for p
[tex]p = \frac{-24000 + 4000q }{7}[/tex]
On the demand equation, we have:
(p,q) = (0, 69)
So, we start by calculating the slope:
[tex]m = \frac{q_2 - q_1}{p_2 -p_1}[/tex]
This gives
[tex]m = \frac{69 - 27}{0 - 12000}[/tex]
[tex]m = -\frac{42}{12000}[/tex]
Simplify
[tex]m = -\frac{7}{2000}[/tex]
The demand equation is then calculated as:
[tex]q = m(p - p_1) + q_1[/tex]
So, we have:
[tex]q = -\frac{7}{2000}(p - 0) + 69[/tex]
[tex]q = -\frac{7}{2000}p + 69[/tex]
Subtract 69 from both sides
[tex]-69 + q = -\frac{7}{2000}p[/tex]
Multiply through by -2000
[tex]138000 - 2000q = 7p[/tex]
Rewrite as:
[tex]7p = 138000 - 2000q[/tex]
Solve for p
[tex]p = \frac{138000 - 2000q }{7}[/tex]
Hence, the demand and the supply equations are [tex]p = \frac{-24000 + 4000q }{7}[/tex] and [tex]p = \frac{138000 - 2000q }{7}[/tex]
Read more about demand and supply at:
https://brainly.com/question/2398546