If you're using the app, try seeing this answer through your broswer: https://brainly.com/question/2822785
________________
Evaluate the indefinite integral:
[tex]\mathsf{\displaystyle\int\!(1+tan^2\,x)\,dx}\\\\\\ \mathsf{=\displaystyle\int\!\bigg[1+\left(\frac{sin\,x}{cos\,x}\right)^{\!2}\bigg]dx}\\\\\\
\mathsf{=\displaystyle\int\!\bigg[1+\frac{sin^2\,x}{cos^2\,x}\bigg]dx}[/tex]
Reduce both terms to the same common denominator:
[tex]\mathsf{=\displaystyle\int\!\bigg[\frac{cos^2\,x}{cos^2\,x}+\frac{sin^2\,x}{cos^2\,x}\bigg]dx}\\\\\\
\mathsf{=\displaystyle\int\!\frac{cos^2\,x+sin^2\,x}{cos^2\,x}\,dx\qquad\quad (but~~cos^2\,x+sin^2\,x=1)}\\\\\\
\mathsf{=\displaystyle\int\! \frac{1}{cos^2\,x}\,dx}\\\\\\
\mathsf{=\displaystyle\int\! sec^2\,x\,dx}[/tex]
and that last one is an immediate integral:
[tex]\mathsf{\displaystyle\int\! sec^2\,x\,dx=tan\,x+C}[/tex]
Therefore,
[tex]\mathsf{\displaystyle\int\! (1+tan^2\,x)\,dx=tan\,x+C}[/tex] ✔
I hope this helps. =)
Tags: indefinite integral anti-derivative trigonometric trig function tangent secant sine cosine tan sec sin cos differential integral calculus