The solution of log(t-3)=log(17-4t) is t = 4
log(t-3) = log(17-4t)
divide both sides by
[tex]\frac{log(t-3) }{log(17-4t)} = \frac{log(17-4t)}{log(17-4t)}[/tex]
Therefore,
[tex]\frac{log(t-3) }{log(17-4t)} = 1[/tex]
[tex]\frac{(t-3) }{(17-4t)} = 1[/tex]
cross multiply
t - 3 = 17 - 4t
t + 4t = 17 + 3
5t = 20
t = 20 / 5
t = 4
learn more on logarithm here: https://brainly.com/question/10060764