The first three steps in determining the solution set of the system of equations algebraically are shown.

y = x2 − x − 3
y = −3x + 5



What are the solutions of this system of equations?

(−2, −1) and (4, 17)
(−2, 11) and (4, −7)
(2, −1) and (−4, 17)
(2, 11) and (��4, −7)

Respuesta :

Your answer is (2,-1), (-4,17).

In order to solve the system of equations algebraically you have to follow those steps

we have

[tex]y=x^{2}-x-3[/tex] ------> equation A

[tex]y=-3x+5[/tex] -------> equation B

Step 1

Equate the equation A and equation B

[tex]x^{2}-x-3=-3x+5[/tex]

[tex]x^{2}-x-3+3x-5=0[/tex]

[tex]x^{2}+2x-8=0[/tex]

Step 2

Convert the quadratic equation in factored form

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]x^{2}+2x=8[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]x^{2}+2x+1=8+1[/tex]

[tex]x^{2}+2x+1=9[/tex]

Rewrite as perfect squares

[tex](x+1)^{2}=9[/tex]

Square root both sides

[tex]x+1=(+/-)3[/tex]

[tex]x=-1(+/-)3[/tex]

[tex]x1=-1+3=2[/tex]

[tex]x2=-1-3=-4[/tex]

Step 3

Find the values of y

Substitute the value of x in the equation B

For [tex]x=2[/tex]

[tex]y=-3*2+5=-1[/tex]

For [tex]x=-4[/tex]

[tex]y=-3*(-4)+5=17[/tex]

therefore

the answer is

[tex](2,-1)[/tex] and [tex](-4,17)[/tex]