Respuesta :
Answer:
Option D. [tex]\frac{1}{tanA}[/tex]
Step-by-step explanation:
tan ( 90-A ) = [tex]\frac{sin(90-A)}{cos(90-A)}[/tex]
since sin (90-A) = cos A
and cos (90-A) = sin A
So [tex]\frac{sin(90-A)}{cos(90-A)}=\frac{CosA}{SinA}=cot A=\frac{1}{tanA}[/tex]
Option D. [tex]\frac{1}{tanA}[/tex] is the correct answer.
Answer:
d. 1/tanA
Step-by-step explanation:
In order to answer, you have to replace x=90-A in the trigonometric identity to express the tangent in function of sine and cosine.
[tex]tan(90-A)=\frac{sin(90-A)}{cos(90-A)}[/tex]
Now you have to apply the following trigonometric identities:
Sin(α-β)=Sin(α)Cos(β)-Cos(α)Sin(β)
Cos(α-β)=Cos(α)Cos(β)+Sin(α)Sin(β)
In this case, α=90 and β=A
Therefore:
[tex]\frac{Sin(90)Cos(A)-Cos(90)Sin(A)}{Cos(90)Cos(A)+Sin(90)Sin(A)}[/tex]
But Sin(90)=1 and Cos(90)=0
[tex]\frac{Cos(A)}{Sin(A)} = \frac{1}{tan(A)}[/tex]