Respuesta :
[tex]\displaystyle\iint_\sigma\mathbf F\cdot\mathrm dS[/tex]
[tex]\displaystyle\iint_\sigma\mathbf F\cdot\mathbf n\,\mathrm dS[/tex]
[tex]\displaystyle\iint_\sigma\mathbf F\cdot\left(\frac{\mathbf r_u\times\mathbf r_v}{\|\mathbf r_u\times\mathbf r_v\|}\right)\|\mathbf r_u\times\mathbf r_v\|\,\mathrm dA[/tex]
[tex]\displaystyle\iint_\sigma\mathbf F\cdot(\mathbf r_u\times\mathbf r_v)\,\mathrm dA[/tex]
Since you want to find flux in the outward direction, you need to make sure that the normal vector points that way. You have
[tex]\mathbf r_u=\dfrac\partial{\partial u}[2\cos v\,\mathbf i+\sin v\,\mathbf j+u\,\mathbf k]=\mathbf k[/tex]
[tex]\mathbf r_v=\dfrac\partial{\partial v}[2\cos v\,\mathbf i+\sin v\,\mathbf j+u\,\mathbf k]=-2\sin v\,\mathbf i+\cos v\,\mathbf j[/tex]
The cross product is
[tex]\mathbf r_u\times\mathbf r_v=\begin{vmatrix}\mathbf i&\mathbf j&\mathbf k\\0&0&1\\-2\sin v&\cos v&0\end{vmatrix}=-\cos v\,\mathbf i-2\sin v\,\mathbf j[/tex]
So, the flux is given by
[tex]\displaystyle\iint_\sigma(e^{-\sin v}\,\mathbf i-\sin v\,\mathbf j+2\cos v\sin u\,\mathbf k)\cdot(\cos v\,\mathbf i+2\sin v\,\mathbf j)\,\mathrm dA[/tex]
[tex]\displaystyle\int_0^5\int_0^{2\pi}(-e^{-\sin v}\cos v+2\sin^2v)\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle-5\int_0^{2\pi}e^{-\sin v}\cos v\,\mathrm dv+10\int_0^{2\pi}\sin^2v\,\mathrm dv[/tex]
[tex]\displaystyle5\int_0^0e^t\,\mathrm dt+5\int_0^{2\pi}(1-\cos2v)\,\mathrm dv[/tex]
where [tex]t=-\sin v[/tex] in the first integral, and the half-angle identity is used in the second. The first integral vanishes, leaving you with
[tex]\displaystyle5\int_0^{2\pi}(1-\cos2v)\,\mathrm dv=5\left(v-\dfrac12\sin2v\right)\bigg|_{v=0}^{v=2\pi}=10\pi[/tex]
[tex]\displaystyle\iint_\sigma\mathbf F\cdot\mathbf n\,\mathrm dS[/tex]
[tex]\displaystyle\iint_\sigma\mathbf F\cdot\left(\frac{\mathbf r_u\times\mathbf r_v}{\|\mathbf r_u\times\mathbf r_v\|}\right)\|\mathbf r_u\times\mathbf r_v\|\,\mathrm dA[/tex]
[tex]\displaystyle\iint_\sigma\mathbf F\cdot(\mathbf r_u\times\mathbf r_v)\,\mathrm dA[/tex]
Since you want to find flux in the outward direction, you need to make sure that the normal vector points that way. You have
[tex]\mathbf r_u=\dfrac\partial{\partial u}[2\cos v\,\mathbf i+\sin v\,\mathbf j+u\,\mathbf k]=\mathbf k[/tex]
[tex]\mathbf r_v=\dfrac\partial{\partial v}[2\cos v\,\mathbf i+\sin v\,\mathbf j+u\,\mathbf k]=-2\sin v\,\mathbf i+\cos v\,\mathbf j[/tex]
The cross product is
[tex]\mathbf r_u\times\mathbf r_v=\begin{vmatrix}\mathbf i&\mathbf j&\mathbf k\\0&0&1\\-2\sin v&\cos v&0\end{vmatrix}=-\cos v\,\mathbf i-2\sin v\,\mathbf j[/tex]
So, the flux is given by
[tex]\displaystyle\iint_\sigma(e^{-\sin v}\,\mathbf i-\sin v\,\mathbf j+2\cos v\sin u\,\mathbf k)\cdot(\cos v\,\mathbf i+2\sin v\,\mathbf j)\,\mathrm dA[/tex]
[tex]\displaystyle\int_0^5\int_0^{2\pi}(-e^{-\sin v}\cos v+2\sin^2v)\,\mathrm dv\,\mathrm du[/tex]
[tex]\displaystyle-5\int_0^{2\pi}e^{-\sin v}\cos v\,\mathrm dv+10\int_0^{2\pi}\sin^2v\,\mathrm dv[/tex]
[tex]\displaystyle5\int_0^0e^t\,\mathrm dt+5\int_0^{2\pi}(1-\cos2v)\,\mathrm dv[/tex]
where [tex]t=-\sin v[/tex] in the first integral, and the half-angle identity is used in the second. The first integral vanishes, leaving you with
[tex]\displaystyle5\int_0^{2\pi}(1-\cos2v)\,\mathrm dv=5\left(v-\dfrac12\sin2v\right)\bigg|_{v=0}^{v=2\pi}=10\pi[/tex]