Respuesta :
Answer:
[tex]=-2t^2+18t+9[/tex]
Step-by-step explanation:
the expression we have is:
[tex](3t-3)+(6t^2+4t+13)+(-8t^2+11t-1)[/tex]
the first step is to get rid of the parentheses:
[tex]3t-3+6t^2+4t+13-8t^2+11t-1[/tex]
an now, we put the like terms together, this will be subtract
[tex]6t^2-8t^2[/tex], and the result is [tex]-2t^2[/tex]
and then add:
[tex]3t+4t+11t[/tex] which results in [tex]18t[/tex]
and finally add all the independent numbers:
[tex]-3+13-1[/tex] which is equal to [tex]9[/tex]
so the total result is:
[tex](3t-3)+(6t^2+4t+13)+(-8t^2+11t-1)[/tex][tex]=-2t^2+18t+9[/tex]