Which of the following cannot be derived from the law of sines?

A.) b/sinB=sinA/a

B.) a*sinB=b*sinA

C.) sinC/sinA=c/a

D.) c*sinA=a*sinC

Respuesta :

A.) b/sinB=sinA/a. hope it helps

Answer:

[tex]\frac{b}{SinB}=\frac{SinA}{a}[/tex]

Step-by-step explanation:

Sine Rule = [tex]\frac{Sin A}{a} =\frac{Sin B}{b}=\frac{Sin C}{c}[/tex]

a)[tex]\frac{b}{SinB}=\frac{SinA}{a}[/tex]

Sine rule is  [tex]\frac{Sin A}{a} =\frac{Sin B}{b}[/tex]

[tex]\frac{b}{Sin B} =\frac{a}{Sin A}[/tex]

Thus Option 1 cannot be derived from the law of sines

b)[tex]a\times sinB=b\times sinA[/tex]

Sine rule is  [tex]\frac{Sin A}{a} =\frac{Sin B}{b}[/tex]

[tex]\frac{b}{Sin A} =\frac{a}{Sin B}[/tex]

Thus Option B can be derived from the law of sines.

c)[tex]\frac{Sin C}{SinA}=\frac{c}{a}[/tex]

Sine rule is  [tex]\frac{Sin A}{a} =\frac{Sin C}{c}[/tex]

[tex]\frac{c}{a} =\frac{SinC}{Sin A}[/tex]

Thus Option C can be derived from the law of sines.

d)[tex]c \times sinA=a\times sinC[/tex]

Sine rule is  [tex]\frac{Sin A}{a} =\frac{Sin C}{c}[/tex]

[tex]c \times sinA=a\times sinC[/tex]

Thus Option C can be derived from the law of sines.

Hence Option A cannot be derived from the law of sines

[tex]\frac{b}{SinB}=\frac{SinA}{a}[/tex]